首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   44篇
  国内免费   28篇
测绘学   3篇
大气科学   81篇
地球物理   7篇
地质学   11篇
海洋学   13篇
天文学   1篇
自然地理   2篇
  2023年   4篇
  2022年   4篇
  2021年   22篇
  2020年   6篇
  2019年   4篇
  2018年   6篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   9篇
  2013年   6篇
  2012年   4篇
  2011年   4篇
  2010年   6篇
  2009年   9篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
排序方式: 共有118条查询结果,搜索用时 31 毫秒
1.
针对离散站点资料格点化的业务需求及 Cressman 方法在地形复杂区域客观分析存在的问 题,利用山东及周边省自动气象站观测的 2 m气温和 ECMWF预报的海上 2 m气温,结合山东省中尺度数值预报位温递减率、90 m分辨率 SRTM高程数据,采用统一高度 Cressman 方法对山东省地面2 m气温进行客观分析,生成了逐 1 h、0.01°×0.01°高分辨率的地面 2 m气温格点产品。结果表明,统一高度 Cressman 方法的客观分析格点产品在地形复杂区域的分析更合理,月平均误差基本在±1 ℃以内,鲁中山区地形高度较高区域月平均误差略大于鲁西北、鲁西南、鲁东南和山东半岛等地的平原地区,气温偏低的10、11、12月温度准确率均略低于 5、6、7、8、9 月;2020 年 5—12 月平均误差为-0.0039 ℃,平均绝对误差为 0.1469 ℃,均方根误差为 0.3597 ℃,2 ℃以内准确率为 99.64%,1 ℃以内准确率为 98.24%,各项检验指标均较优。总体上统一高度 Cressman 客观分析格点产品质量接近中国气象局陆面数据同化系统( HRCLDAS )高分辨率格点实况产品。  相似文献   
2.
相关分析在气象科研和业务中具有广泛应用,是定量分析气象变量之间关系的重要工具。首先系统综述了气象科研与业务中不同计算形式的相关分析算法,然后重点阐述了相关分析在气象领域应用的最新进展,特别是全窗口滑动相关和相关系数的扫描式多尺度突变检测算法。接着介绍了大数据研究领域中新发展的相关分析算法,简析了其对气象相关分析的启示。最后分析了气象相关分析中存在的问题,并且对相关分析在气象领域未来的发展趋势进行了展望。   相似文献   
3.
云量对祁连山老虎沟12号冰川表面能量平衡的影响   总被引:1,自引:1,他引:0  
为探讨云量对冰川表面能量平衡(SEB)的影响,利用架设在老虎沟12号冰川(简称12号冰川)消融区(4 550 m a.s.l.)的自动气象站资料,结合能量平衡模型计算各能量分量并分析其季节变化,通过云量参数化方案获取云量因子并量化其对冰川表面能量收支的影响。结果表明:净短波辐射为冰川表面主要的能量来源(92%),净长波辐射为主要能量支出(61%),二者均受云量影响,但云的短波辐射效应更强(-37 W?m-2)。云量通过影响辐射收支和湍流通量进而影响冰川表面能量收支,随云量的增加,冰川表面获得的能量减少,冰川消融速率降低。与其他区域的冰川表面能量收支对比,除地理位置、反照率、气温等因素外,海拔和云量的影响也非常显著。  相似文献   
4.
应用常规气象观测资料、NCEP 1°×1°再分析资料,选取登陆北上山东地点相近但暴雨落区分别位于台风中心西北侧和东北侧的两个台风,分析暴雨落区相对台风中心非对称分布的成因。结果表明:台风进入中纬度以后,0421号台风“海马”位于高空深槽前,与西风槽相互作用,西风槽携带的冷空气从西北侧侵入台风环流,产生湿斜压锋区强迫抬升、冷暖空气交绥、水汽辐合等因素造成暴雨,暴雨趋于出现在台风中心的西北侧,为高比湿舌前方、较强水汽辐合区与相当位温密集区叠加的区域;而0509号台风“麦莎”与副热带高压相互作用,引起涡度及涡度平流的非对称改变,暴雨区与500 hPa正涡度区或正涡度平流相对应,暴雨趋于出现在台风中心的东北侧,为强正涡度平流区与水汽辐合叠加的区域。  相似文献   
5.
Stochastic weather generators are statistical models that produce random numbers that resemble the observed weather data on which they have been fitted; they are widely used in meteorological and hydrologi- cal simulations. For modeling daily precipitation in weather generators, first-order Markov chain-dependent exponential, gamma, mixed-exponential, and lognormal distributions can be used. To examine the perfor- mance of these four distributions for precipitation simulation, they were fitted to observed data collected at 10 stations in the watershed of Yishu River. The parameters of these models were estimated using a maximum-likelihood technique performed using genetic algorithms. Parameters for each calendar month and the Fourier series describing parameters for the whole year were estimated separately. Bayesian infor- mation criterion, simulated monthly mean, maximum daily value, and variance were tested and compared to evaluate the fitness and performance of these models. The results indicate that the lognormal and mixed-exponential distributions give smaller BICs, but their stochastic simulations have overestimation and underestimation respectively, while the gamma and exponential distributions give larger BICs, but their stochastic simulations produced monthly mean precipitation very well. When these distributions were fitted using Fourier series, they all underestimated the above statistics for the months of June, July and August.  相似文献   
6.
地形对门头沟一次大暴雨动力作用的数值研究   总被引:7,自引:2,他引:5  
2002年6月24—25日,北京门头沟附近发生了一次大暴雨过程。为探讨地形在本次过程中的动力作用,采用美国俄克拉荷马大学风暴分析预测中心开发的ARPS模式,对大暴雨过程进行了数值试验。控制试验采用27、9 km双重单向嵌套网格,网格覆盖范围约为3000 km×3000 km、900 km×900 km。两层网格均采用全物理过程,使用的都是全球30″的地形资料。在控制试验的基础上,进行了3组敏感性试验:第1组试验采用干过程模拟,即不考虑凝结潜热的作用;第2组试验将地形整体向东/西平移1°;第3组试验是将门头沟西部的局地地形抠除一部分。试验结果表明,在不考虑凝结潜热作用时,东南风气流仍然可以爬升到2 km以上,超过了大气的抬升凝结高度,证实了地形的动力作用是本次大暴雨的触发机制;将地形向东/西平移1°后,由于大气的对流稳定度发生了改变,模拟的降水强度和落区也发生了变化,表明山坡和山顶的对流不稳定大气是导致本次大暴雨的必要条件;抠除局地地形后,模拟的降水量也发生了不同程度的改变,再次证明大暴雨是在多尺度地形以及一定的天气系统配置下产生的。  相似文献   
7.
微降水雷达测量精度分析   总被引:2,自引:0,他引:2  
利用数值模拟的方法,讨论了利用微降水雷达MRR(Micro Rain Radar)雷达功率谱密度反演降水参数时,MIE散射(米散射)效应、垂直气流(包括上升气流、下沉气流)对数浓度N、雷达反射率Z、雨强I、液态含水量LWC等参数的影响。MIE散射主要影响直径为1.20~4.00 mm的粒子,MIE散射效应影响的N、Z、I、LWC偏差的平均值分别为2.74 m-3 mm-1、1.47 d BZ、0.0061 mm h~(-1)、0.0004 g m-3。下沉气流使反演液滴直径偏大,上升气流使得反演的液滴直径偏小,下沉气流的影响更大,尤其是对低层影响大于高层。例如,在300 m高度上,当液滴直径为2.67 mm时,下沉气流为2.00 m s-1时,理论上反演的直径为8.07 mm,超出了MRR探测的阈值,其相对误差值能接近200%。下沉气流使得反射率谱向大粒子方向平移,且谱型展宽;上升气流则相反。将MRR资料与同步观测的THIES雨滴谱仪数据进行比对,分析MRR资料的可靠性。选取2015年4月1日01~12时(协调世界时)山东济南的一次降水过程,将MRR在300 m高度上反演的雷达反射率因子、雨强、数浓度、中值体积直径与雨滴谱仪资料进行对比。结果表明:两种仪器探测的Z、I、N、中值体积直径D0在时间序列上都有较好的吻合度,变化趋势和幅度相近,Z、I、D0的平均偏差分别为1.19 d BZ、0.34 mm h~(-1)、0.36 mm。MRR反演的I值偏大,而粒子直径偏小,分析了产生偏差的主要原因,除了探测系统偏差、分析方法本身存在的偏差外,上升气流导致的偏差不容忽视。这些结果初步验证了微降水雷达观测的功率谱密度及其反演方法的可靠性。  相似文献   
8.
研究不同云系降水的微物理参数特征,对研究降水机制、人工影响天气、雷达定量测量降水、数值预报模式中微物理参数化方案的选择等都有一定意义。本文针对2015年济南地区的液态降水过程,基于微降水雷达(Micro Rain Radar,简称MRR)资料,研究不同云系降水的微物理参数。在400 m高度上,层状云降水0.02~0.2 mm h-1雨强样本数很大,但对累计降水量的贡献很小。混合云和对流云降水在大粒子端数浓度较高。在垂直方向上,层状云降水中的粒子的尺度较集中,中值体积直径D0平均在1 mm左右,随高度的变化不大。对流云降水在雨强大于20 mm h-1时,强垂直气流(包括上升气流和下沉气流)对粒子直径的影响较大,进而影响空中微降水雷达反演降水参数的数据质量。而垂直气流的影响对层状云降水影响较小,在层状云降水时,微降水雷达可以用来分析零度层亮带以下雨滴谱在垂直方向上的演变。  相似文献   
9.
青藏高原作为世界第三极,其热力强迫作用不仅对亚洲季风系统的发展和维持十分重要,也会对大气环流场产生深远影响。利用欧洲中期天气预报中心(ECMWF)的ERA-Interim中1979-2016年3-10月青藏高原及其周边地区的地表热通量月平均再分析资料,通过分析得出以下结论:3-5月青藏高原主体由感热占据,感热强度快速上升且呈西高东低的分布态势,潜热强度较小但随时间而增强。季风爆发后的6-8月,青藏高原感热强度减弱,潜热强度迅速增强且呈东高西低的分布特征。季风消退后的9-10月,感热与潜热强度相当,但感热呈现出西高东低的分布特征。过去38年,青藏高原地表感热总体呈现微弱下降趋势,潜热呈较弱上升趋势。青藏高原西部地区感热呈微弱下降趋势,潜热呈上升趋势。东部感热呈较为明显的下降趋势且近年来变化趋势增强,东部潜热通量则呈现较为明显的上升趋势,分析结论与近期全球变暖条件下青藏高原气候变暖变湿这一变化状况一致,通过对青藏高原地表热通量的变化分析为下一步运用第三次青藏高原大气科学试验所获资料分析青藏高原上空大气热源的变化以及地表加热场如何影响大气环流奠定基础。   相似文献   
10.
基于WRF(Weather Research and Forecasting)模式及其3DVAR(3-Dimentional Variational)资料同化系统,采用36 km、12 km 、4 km三层嵌套网格进行逐3 h资料同化和快速更新循环预报,对2011年5月8日鲁中一次局地大暴雨过程进行了资料同化敏感性试验。试验结果表明,地面观测资料同化和快速更新循环对本次降水的预报起到了关键性作用。在快速更新循环预报时不同化地面观测资料,或同化全部观测资料进行冷启动预报,模式均不能预报出山东的降水。同化地面观测资料后,显著改进了模式降水落区预报。地面观测资料同化可以影响到700 hPa高度以上温压湿风要素的变化,从而改变了大气初始场的温湿结构,导致模式预报的700 hPa附近高空大气湿度和热力不稳定增强,700 hPa以下低层风场更强,850 hPa鲁中以南风速较无观测资料同化的偏强2~4 m·s-1,低层风场的动力作用触发高空的不稳定大气,降水出现在山东。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号